A Short Note on Coronary Stents

Coronary stents are expandable tubular metallic devices which are introduced into the coronary arteries that demonstrate stenosis due to an underlying atherosclerosis disease. This revascularization procedure is termed as a percutaneous coronary intervention (PCI) or coronary angioplasty with stent placement. The coronary stent was first developed in the 1980s and has continued to evolve in terms of shape, structure, and the material used within them. In a pre-stent era, balloon angioplasty was the mainstay of coronary revascularization in which an inflatable balloon-tipped catheter was inserted percutaneously through an arterial entry site in the extremity and advanced into the coronary arteries. On reaching the coronaries, the balloon was inflated to compress the atherosclerotic plaque against the vascular wall and restore blood flow to the myocardium. The balloon was withdrawn after deflating. This procedure had major drawbacks such as acute vessel closure due to arterial recoil, coronary artery dissection, acute arterial thrombosis, and restenosis due to neointimal hyperplasia. With the introduction of coronary stents, coronary dissection and vascular recoil were eliminated due to the expandable, metallic meshwork of the stent, which prevents negative remodelling.
DES consists of three components: a metallic stent platform, an active pharmacological drug agent, and a carrier vehicle. Stainless steel or cobalt-chromium is the most common metal and gives long-term mechanical stability to counteract vascular recoil. Commonly used drugs act to block signal transduction and cell cycle progression in different phases, thereby blocking smooth muscle cell proliferation or intimal hyperplasia in the stented arterial site. Rapamycin agents bind to the intracellular protein, FKBP-12, that inhibits the protein kinase mammalian target of rapamycin. This intracellular complex increases the expression of p27 and blocks the progression of the cell cycle from the G1 phase to the S phase (DNA synthesis). Another drug category is taxanes, which interfere with microtubule function, which is necessary for the M phase. So cells get arrested in the G2 phase of the cell cycle.
Journal of Imaging and Interventional Radiology is the peer-reviewed journal of choice for interventional radiologists, radiologists, cardiologists, vascular surgeons, neurosurgeons, and other clinicians who seek current and reliable information on every aspect of interventional radiology.
Each issue in Journal of Imaging and Interventional Radiology covers critical and cutting-edge medical minimally invasive, clinical, basic research, radiological, pathological, and socioeconomic issues of importance to the field. The journal is a medium for original articles, reviews, pictorial essays, technical notes and case reports related to all fields of interventional radiology. Manuscripts can be submitted to online at https://www.imedpub.com/submissions/imaging-interventional-radiology.html or an attachment to mail: radiology@emedscholar.com
Best wishes
Ann Jose
Journal coordinator
Journal of Imaging and Interventional Radiology
intervradiology@longdomjournal.org