NANOTECHNOLOGY CANCER AND ITS USES

NANOTECHNOLOGY CANCER therapies are currently limited to surgery, radiation, and chemotherapy. All three methods risk damage to normal tissues or incomplete eradication of the cancer. Nanotechnology offers the means to target chemotherapies directly and selectively to cancerous cells and neoplasms, guide in surgical resection of tumors, and enhance the therapeutic efficacy of radiation-based and other current treatment modalities. All of this can add up to a decreased risk to the patient and an increased probability of survival.
Research on nanotechnology cancer therapy extends beyond drug delivery into the creation of new therapeutics available only through use of nanomaterial properties. Although small compared to cells, nanoparticles are large enough to encapsulate many small molecule compounds, which can be of multiple types. At the same time, the relatively large surface area of nanoparticle can be functionalized with ligands, including small molecules, DNA or RNA strands, peptides, aptamers or antibodies. These ligands can be used for therapeutic effect or to direct nanoparticle fate in vivo. These properties enable combination drug delivery, multi-modality treatment and combined therapeutic and diagnostic, known as “theranostic,” action. The physical properties of nanoparticles, such as energy absorption and re-radiation, can also be used to disrupt diseased tissue, as in laser ablation and hyperthermia applications
Journal of medical physics and applied sciences is an international peer reviwed journal aiming to publish the most relevant and recent research works across the world. Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g. x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient.
We are inviting the worldwide researchers and scholars to share their valuable research work in our journal. We always encourage new research works under the scope of our Journal. You can submit the manuscript as an email attachment to medicalsci@scholarlymed.com or through online at https://www.imedpub.com/submissions/insights-medical-physics.html
Media contact
Eliza Miller
Managing Editor
Journal of Medical Physics and Applied Sciences